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Fig. 1. System Overview of HandSAW: A) A customized PCB wearable system with 4 VPU sensors for surface acoustic wave
collection and wireless transmission. B) User interacts with daily objects, a hairdryer as an example. C) Acoustic signal of
daily objects has different signatures in the raw waveform. D) Real-time machine learning pipeline predicts the activities
that the user is performing.

Enabling computing systems to detect the objects that people hold and interact with provides valuable contextual information
that has the potential to support a wide variety of mobile applications. However, existing approaches either directly instrument
users’ hands, which can reduce tactile sensation, or are limited in the types of objects and interactions they can detect. This
work introduces HandSAW, a wireless wrist-worn device incorporating a Surface Acoustic Wave (SAW) sensor with enhanced
bandwidth and signal-to-noise ratio while rejecting through-air sounds. The device features a sealed mass-spring diaphragm
positioned on top of the sound port of a MEMS microphone, enabling it to capture SAWs generated by objects and through
touch interaction events. This custom-designed wearable platform, paired with a real-time ML pipeline, can distinguish 20
passive object events with >99% per-user accuracy and a 91.6% unseen-user accuracy, as validated through a 16-participant
user study. For devices that do not emit SAWs, our active tags enable HandSAW to detect those objects and transmit encoded
data using ultrasonic signals. Ultimately, HandSAW provides an easy-to-implement, robust, and cost-effective means for
enabling user-object interaction and activity detection.
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1 Introduction

Empowering intelligent systems to detect how people interact with objects can enable human activity recog-
nition [15, 31, 50, 81, 87, 108, 123], automated health and wellness monitoring [25, 26], real-time guidance for
tasks [24, 49], and immersive AR/VR experiences [46, 75]. To achieve this vision of hand-based event recognition,
researchers have explored various sensing techniques including cameras [32, 67, 114], inertial measurement
units (IMU) [14, 86, 87, 106], electromyography (EMG) [40, 70], pressure sensors [1, 17], and radio/acoustic
transceivers [10, 13, 117]. Many designs have adopted glove-based configurations that directly instrument the
hands for greater signal fidelity, but glove-based designs can be cumbersome for long-term wear. As a result,
many recent approaches limit the instrumentation to rings or opt for wrist-worn strategies [48, 103]. These
approaches often rely on techniques that permit signal transfer through the body, such as passive electromagnetic
(EM) or active radio frequency (RF) sensing [53, 57, 108, 120]. However, these approaches are often limited in the
types of activities or objects that can be detected, as they typically function only with objects that emit EM signals
or are composed of compatible materials. While microphones have been explored for human activity recognition,
including in wearable applications [10, 13], microphone-based methods may have difficulty segmenting the user’s
individual activities from simultaneous activities happening in the environment, and the “always-on” operation
can invoke privacy concerns due to the nature of the information they collect, such as a bystander’s speech.
While recent work looks towards ultrasonic signals [118, 121, 129] to reduce privacy concerns, such approaches
also reduce the scope of events these systems can recognize. Ideally, a wearable system should be able to identify
a variety of objects, be easy to integrate into existing wearables, and be robust to environmental noise.

Given these constraints, we identified Surface Acoustic Waves (SAWs) as a valuable signal source for mobile
and wearable applications. Many objects that have kinetic qualities—the moving gears in a drill, fluids running
through a sink fixture—generate waves when they are activated: sound waves through the air, traditional 3D
bulk vibrations through the material, and the aforementioned SAWs that travel along their 2D surface [71, 85].
Traditional vibrations and SAWs can travel from objects and into the body upon touch. This characteristic enables
their respective sensing approaches to reject in-air environmental sounds and noises while allowing for the
active selection of signals exclusively from objects the wearer touches. This paper presents HandSAW, a wearable
platform that utilizes a new class of contact-based surface-acoustic-wave sensors originally designed for hearing
aids and marketed by the manufacturer as a "Voice Pickup Unit" (VPU). It has characteristics significantly
different from those of previous contact microphones. It consists of a hermetically sealed mass-spring diaphragm
placed on top of the sound port of a standard MEMS microphone, which effectively eliminates sound
transmitting through air and is sensitive to mechanical vibration signals from the contacted surface. This new
device provides superior bandwidth (48kHz) and signal-to-noise ratio (SNR).

By capitalizing on the capabilities of the VPU, we propose to repurpose this device for on-body sensing for
hand-based object and activity detection. When a user interacts with an object, the SAW's generated by the object
or via contact with the object carry unique acoustic signatures that travel along the surface-to-air boundary
of their body. By sampling these signals with the VPU, the wearable platform is able to classify the activity
being performed. The HandSAW system is shown in Figure 1A. When a user touches an object, SAWs pass
along the surface-to-air boundary of their body and into the wearable platform (Figure 1B). HandSAW’s signal
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processing (Figure 1C) and machine learning pipeline are then able to classify user activities and events in real-
time (Figure 1D). Given that not all objects emit acoustic waves when interacted with, an “active” communication
is proposed as an alternative method for identifying “silent” objects. For these objects, low-cost ultrasonic
transducers can be equipped to encode information using methods such as Amplitude Shift Keying (ASK). Bits 1
and 0 are programmatically generated, allowing HandSAW to decode them for data transfer when a user touches
the object. Beyond augmenting objects with “active” ultrasonic transmitters, several common devices, such as
smartphones, can also encode data through audible or inaudible sounds or vibrations. This dual approach can
work in tandem with the passive signals that already exist or allow any object to be instrumented with an active
tag to enable through-body SAW-based communication.

This work evaluates SAWs in wearable applications from four aspects. First, compared with two common
wearable sensors (an accelerometer and piezoelectric disk), VPU maintained the highest SNR across a wide
frequency range and offered the greatest consistency in reliably capturing signals across participants. These
experiments demonstrated that the VPU can deliver strong recognition performance across a range of activities
and across users from a theoretical operational perspective. Second, HandSAW was evaluated through a 16-
participant user study of 20 classes of events, including tactile feedback, workshop, home, office, and self-care
activities. We found >99% per-user accuracy, as well as an across-user accuracy of 91.6%, demonstrating strong
performance even for a new user. Third, the performance for active data transfer encoded by ultrasonic signals
with the ASK method was measured through a bit error rate evaluation, finding that HandSAW can sustain
3000bps with around 1% bit error. Finally, illustrative applications highlight the practical utility of HandSAW:
wearable activities tracking daily living and encoded information flow using ultrasonic active data transfer.

This paper makes the following contributions:

(1) A wearable platform capable of capturing SAW-based object interaction events and receiving active data
transfer;

(2) Experimental results showing HandSAW’s passive sensing capabilities, which can recognize 20 different
hand-object interaction events consistently across 16 participants;

(3) Assessment of HandSAW’s active data transfer capabilities as the way filling gap for hand interactions that
do not generate sound, which can sustain 3000bps with 1% bit error rate;

(4) Applications highlighting HandSAW’s utility in wearable daily activity recognition and context-driven data
transfer.

2 Related Works

In this section, we contextualize HandSAW by first providing a broad overview of sensing approaches related to
the hands. We then focus on activity detection through wearable devices using acoustic methods.

2.1 Sensing Approaches for the Hands

Given the importance of users’ hands in various forms of interaction with computers, objects, and each other, it
is no wonder that a significant body of research within the mobile computing system literature is dedicated to
enabling computers to better understand what our hands are doing. From hand pose [32, 37, 41, 42, 86, 106], discrete
gestures [36, 47, 55, 67, 114], to hand-touch detection [43, 82, 109], hand-object interaction [28, 53, 57, 93, 101],
human activity recognition [27, 43, 44, 95, 124, 125], hand-related sensing technologies generally fall into two
main categories: environmental and wearable approaches. Environmental methods, primarily relying on optical
technologies like overhead cameras and fiducial markers (e.g., Vicon system [98], CornerCameras [92]), have
advanced with the growth of computer vision (CV) [6, 93, 94, 126]. While these systems offer the advantage
of a one-time setup, they are limited by line-of-sight issues or become ineffective outside the instrumented
environment. To overcome these limitations, the focus on human-computer interaction has shifted towards
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wearable technologies for human activity recognition (HAR). Sensing mechanisms such as acoustic [10, 13, 117],
IMU [14, 52, 58, 69, 77, 96], and RF backscatter techniques [9, 57, 73, 83, 84, 100, 120] have been explored. Wearables,
being in constant contact with the user, offer continuous tracking across various environments and interactions.
Early wearable solutions like glove-based systems [102] provided high signal fidelity but were impractical for
long-term use due to their intrusiveness and discomfort. This has led to the development of less obtrusive
alternatives such as sensing rings, wristbands, and armbands [3, 21, 67, 68, 81, 97, 104], which capitalize on
the hand’s natural ability to conduct signals. For example, EM-Sense wristband [53] and Z-Ring [108], exploit
the transmission of radio frequency (RF) and body signals through the hands to enable hand-based activity
recognition. A detailed comparison with several typical sensing techniques is provided in Section 7.1 for a better
contextualization of this research.

Our approach, HandSAW, follows a similar philosophy, using a wristband to capture Surface Acoustic Waves
(SAWs) generated during hand-object interactions, thus offering seamless integration of hand sensing and wearable
technology for activity recognition. Enhanced by the advanced design of the VPU sensor for capturing SAWs,
HandSAW provides superior bandwidth and signal-to-noise ratio while rejecting through-air sounds. This work
fundamentally expands the scope and breadth of interactions that can be detected while maintaining superior
accuracy and robustness across diverse users and environments. It is important to note that the recognition of
completely static hand gestures is outside the scope of this research.

2.2 Human Activity Recognition Using Acoustic Sensing

Most related to HandSAW in technique are acoustic approaches for sensing activity recognition. Most commonly,
acoustic approaches use microphones, which capture in-air sounds, featurize them with Fast Fourier Transforms
(FFTs) or Mel-Frequency Cepstral Coefficients (MFCCs), and use classical or deep learning approaches to classify
acoustic events [10, 13, 105, 117]. Microphones may also be combined with active emitters over the air to perform
Frequency Modulated Continuous Wave (FMCW) recognition of activities [60, 64, 112, 127]. However, always-on
microphones create privacy concerns, which may dissuade users away from continuous use, especially in wearable
settings [35? ]. Some FMCW systems operate entirely with ultrasonic emitter and receiver pairs and do not
capture audible frequencies, such as speech content [61, 72, 76, 89, 118, 122, 129]; this also means they cannot
passively capture signals emitted from objects the user interacts with. To passively capture signals from objects
without capturing audible or speech content[88, 115, 116, 121, 128]. SAWSense [38] utilizes the latest generation
of VPU microphones from Sonion Inc. to capture SAWs from physical objects’ operating surfaces. However,
SAWSense does not have the capability to distinguish how a user activated the devices or which object is currently
being touched and interacted with. In contrast, HandSAW captures signals through user touch, which enables
the system to recognize exactly when and even how a user is interacting with objects. For example, the system
can identify actions such as using a Dremel tool at a low speed.

3 On-Body Sensor Comparisons

This section introduces the background of Surface Acoustic Waves (SAWs) and the design details of Voice
Pickup Units (VPU). Subsequently, experiments compared the VPU with two common wearable sensors—an
accelerometer and a piezoelectric disk. The VPU demonstrated superior SNR across a wide frequency range
and reliably captured signals across participants, establishing a strong foundation for future wearable device
development.

3.1 Primer on Surface Acoustic Waves and Voice Pickup Units

Many objects with kinetic qualities, such as the motor in a hand drill or the levers in a doorknob, create waves
upon their activation through the air (sound), the 3-D bulk of the material (bulk vibrations), and along their 2-D
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surfaces (surface acoustic waves) [71, 85]. When these waves emanate, traditional vibrations and SAWs can travel
through the hands and into the body upon touching these objects. This quality, where vibrations and SAWs only
travel on the body on touch, allows their respective sensing approaches to reject in-air environmental sounds
and noises. This quality also enables active selection in only capturing signals from objects the wearer touches.
However, given that SAWs propagate in 2 dimensions, the amplitude decay is reduced when compared to 3-D
bulk vibrations (1/+/r vs. 1/r) [45, 91]. This lower decay rate suggests that a larger fraction of the original signal
will reach the hands, thus offering a greater ability to sense more subtle events through SAWs.

Based on these beneficial characteristics of SAWs, we utilize Sonion Voice Pickup Units (VPU) to capture
these signals. The VPU was initially designed as a compact (3.5 X 2.65 X 1.50 mm) bone conduction microphone
for hearing aids optimized to capture a wearer’s voice without capturing environmental noise through the
air [99]. Functionally, the VPU contains a mass-spring diaphragm mounted on top of the sound port of a standard
INVN (ICS-40619) MEMS microphone, which are both hermetically sealed inside an enclosure to prevent outside
sounds from being captured by the microphone. The design is impedance-matched for sensing direct contact
vibrations rather than free-air acoustic vibrations. By adding mass to the diaphragm, its resonant frequency can
be controlled, and the Quality factor or “Q” of the resonator can be tuned to improve the VPU’s sensitivity and
maintain the wide bandwidth of the MEMS microphone. As a result, the VPU from Sonion is able to detect SAWs
through direct contact while robustly rejecting in-air noise, which we have repurposed as a high bandwidth and
high signal-to-noise ratio general-purpose SAW sensor.

The use of on-body SAWSs has been explored primarily in the medical literature [56]. Earlier studies have
shown that the elastic properties of cell membranes allow SAW signals to propagate efficiently through human
tissue [74]. These properties have led bioengineers to innovate in areas like measuring elasticity in soft materials
or human skin [39], detecting melanoma through laser-generated SAWs [12], isolating stem cells, creating cell
spheroids, and manipulating cells within scaffolds [39]. However, while these works strongly support that SAWs
can travel well when actively generated on the body, we use this section to evaluate how well passive signals from
objects maintain these properties and travel along the body to be captured by Voice Pick Up Unit (VPU) sensor.
Additionally, as a point of comparison, we include two common sensors used in on-body sensing applications: an
accelerometer and a piezodisk transducer.

3.2 Experimental Setup & Sensor Selection

Although prior work [38] compared VPU and other common sensors, including accelerometers, microphones,
and geophones, they were evaluated by placing the signal source and sensor on the same surface. This differs
from wearable situations where the sensor is in contact with the user’s body (such as on the wrist), and the signal
has to “jump” from the object to the body. Furthermore, while signals may have similar signatures on materials
within the same categories (i.e., similar glass and metals), achieving consistent performance across different users
can be challenging. Acoustic signals, in particular, can vary significantly from one person to another [37]. Several
different sensors are considered for comparison. In reference to traditional surface transducers, the two most
commonly used types are geophones [30] and piezoelectric transducers [7, 33]. While widely used, geophones
suffer from extremely limited bandwidth (usually less than 250 Hz), are bulky, and are limited to vertical oration
for gravity due to the nature of their design. These factors make them fundamentally unsuitable for wearable
and mobile applications. Traditional contact microphones, such as the piezoelectric transducer (e.g. Knowles
BU-21771), are piezoelectric sensing devices in surface-mount packages, which operate on the same principles as
the piezoelectric disk. Considering Knowles BU-21771 costs $61 USD, a standard piezoelectric disk is selected for
comparison. Apart from privacy concerns, microphones capture environmental noise when used in an “always-on”
fashion, which is not considered for wearable use. Moreover, these factors warrant additional evaluation of VPU
at various locations on the body with diverse participants.
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Fig. 2. (a): Frequency response test setup includes a speaker connected to a function generator. (b): Participants placed their
palms on the speaker with three sensors—IMU, piezoelectric disk, and VP U—on the wrist for synchronized data collection.
Note: VPU dimensions are 2.65mm X 3.5mm, PCB size 12mm X 13mm. (c): Depicts mean frequency response curves for the
three sensors from 1Hz to 20kHz across four users, with an X’ marking the accelerometer’s Nyquist limit.

As a point of comparison, we selected LSM9DS1 [62] inside an Arduino Nano Sense 33, and add the 7BB-27-4L0
piezoelectric disk [19], as shown in Figure 2(a). The output data rate (ODR) of the LSM9DS1 was set to 500Hz,
representative of high-end accelerometers in consumer-off-the-shelf (COTS) devices. Although IMUs with greater
bandwidth and higher ODRs exist, such as ones in the kilohertz range [18, 34], there are a few factors we
considered when selecting the LSM9DS1 and setting its ODR. First and foremost, the LSM9DS1 ($6) is priced
roughly on the same scale as the VPU ($2) and piezoelectric disk ($0.85), compared to the specialized high-
frequency low-noise ADXL1001 ($75). Second, while comparatively cheap COTS IMUs can be set to significantly
higher ODRs, their sensor bandwidth is often limited due to underlying mechanical limitations and Digital Low
Pass Filters (DLPF) that ensure the output of high SNR data [34]; in this case, the bandwidth is not necessarily
half the ODR. For example, while the MPU-9250 (a COTS-grade IMU) can be set to an ODR of 4kHz, a 1.1kHz
bandwidth can only be achieved by disabling the DLPF. Thus, for IMUs, often a higher ODR does not imply
increased bandwidth and comes at the cost of additional noise, thus compromising the data quality even when
only capturing lower frequency signals [18]. The LSM9DS1 has a sensor bandwidth of 400Hz with its DLPF
enabled, ensuring low noise performance when its ODR is set to 500Hz. In this study, a piezoelectric disk was
interfaced with a Behringer UM2 [4], configured at a 48kHz sampling rate with a 200x gain preamplifier and 1
Megohm impedance input. The VPU has a digital Pulse Density Modulation (PDM) interface configured with
an output audio signal bandwidth of 0-24kHz. The experimental setup is situated within an acoustically sealed
chamber (2m X 2m), minimizing both noise and vibrations from the outside. The experiment was conducted on
four participants (two females and two males), with an average age of 24.0 (SD=1.9). The mean wrist diameter
was 16.4cm (SD=0.8cm), and the average arm length was 68.8cm (SD=0.8cm). We note that these evaluations
were performed in accordance with our institution’s IRB.

3.3 Frequency Response Evaluation

We first conducted the following tests, which examined frequency response of different sensors when attached on
the body, to understand sensors’ capability to capture various frequency acoustic signals. The frequency response
of the VPU, accelerometer, and piezoelectric disk was assessed with the sensors concurrently mounted on the
dominant wrist of participants, as shown in Figure 2. The participant’s hand was placed on a GigaWorks T20
speaker housing, connected to a function generator performing a 1Hz to 20kHz linear sweep. Contact was limited
to the hand and speaker, avoiding any other body or table contact. The sweep was simultaneously recorded by
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Fig. 3. (a): Experiment setup involved sensor testing on seven body sites: wrist, forearm, elbow, upper arm, shoulder, neck,
and face. (b): A marble was dropped onto a table 10 cm from the user’s hand, with sensors attached for data capture. (c): The
study presents mean SNR curves for four users, comparing the VPU and piezo disk across the seven body locations, while
the IMU was excluded due to its high noise levels.

all sensors. Signal-to-Noise ratio calculations across the sweep compared the captured signal at each frequency
against the respective sensor’s noise floor. Figure 2 illustrates each sensor’s mean frequency response curve and
standard error across participants.

Figure 2 reveals that the accelerometer effectively surpasses the noise floor but is restricted to frequencies
below 250Hz due to its sampling rate. In contrast, the piezoelectric disk outperforms the accelerometer at higher
frequencies, remaining above the noise floor up to nearly 10kHz. The VPU, however, consistently registers signals
well above the noise floor across the spectrum, with its SNR dropping below 36dB only at 16kHz. Notably, the
SNR of the other sensors never surpasses 36dB. All sensors exhibit low standard error across participants, with
the VPU displaying the lowest average, indicating its superior consistency and potential for strong performance
across different users.

3.4 On-Body Locations Evaluation

Following the demonstration of the VPU’s capacity to capture a broad frequency range at the wrist with high
fidelity, this study now examines signal propagation along the body, informing potential sensor placements for
on-body sensing. In this study, impulses were generated by dropping a 5.5-gram, 1.5-cm diameter glass marble
from 6 cm height, 10 cm away from the hand positioned between the index finger and thumb (Figure 3(b)). This
method was replicated at seven body locations (wrist, forearm, elbow, upper arm, shoulder, neck, and face),
as illustrated in Figure 3(a). Participants maintained hand-only contact with the table, mirroring the earlier
evaluation. The marble drop experiment, selected for its controlled reproducibility and real-world applicability, is
ideal for studying impulse signals. Such signals, characterized by short, high-energy bursts, have a wide frequency
range according to the Fourier Transform principle. This makes a marble drop, as an almost ideal impulse signal,
useful for analyzing broad-spectrum frequency responses.

Figure 4 shows the IMU’s inability to clearly capture the marble drop at the wrist, a pattern consistent across all
participants and seven locations, due to its high noise floor. In contrast, both the VPU and the piezoelectric disk
distinctly registered the marble drop. Nonetheless, the piezoelectric disk’s high noise floor limited its detection of
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Fig. 4. Raw ADC data of three sensors in the marble drop experiment. The VPU effectively distinguishes between signal and
noise in the final diminishing bounces, whereas the piezo disk mainly registers noise over the actual signal towards the end,
indicating superior performance of the VPU in capturing faint signals. The SNR is also larger for VPU than Piezo.

finer bounces, unlike the VPU. The VPU’s superior sensitivity enabled high-fidelity capture of the marble drop,
even on the face, as evidenced by the mean SNR curves (Figure 3). Except for the neck, the VPU consistently
outperformed the piezoelectric disk, which showed peak performance at the wrist. At the neck, both sensors’
performance declined, likely due to the inadvertent capture of respiratory sounds, increasing the noise floor.

3.5 Environmental Evaluation

Previous evaluations established the VPU’s superiority over accelerometers and piezoelectric disks in frequency
response and body placement under optimal conditions. Extending these tests to more realistic scenarios, we
introduced background music during the marble-drop procedure, as depicted in Figure 5. The accelerometer, which
could not detect the marble drop in any test, was excluded from this evaluation. The piezoelectric disk exhibited
a notable noise floor increase when music played, indicating its sensitivity to airborne sounds. Consequently, we
conducted a modified marble drop test with the participant’s wrist elevated, holding both sensors in the air. In
this setup, the piezoelectric disk registered the marble drop through the air, albeit with reduced amplitude, while
the VPU did not. The majority of piezoelectric disks used in object interaction and surface detection research
are designed to operate in the lower range of human hearing. Generally speaking, a piezo disk consists of a flat
surface made of piezoelectric material that generates an electrical charge in response to mechanical stress. This
allows the disc to detect mechanical waves and convert them into corresponding electrical signals. However, for
the piezo disk, various sources can induce mechanical stress and thereby cause it to capture unintended signals.
For example, for a given piezo disk, airborne sound waves can induce vibrations in the disk’s structure, allowing
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Fig. 5. Signal comparison between VPU and piezo disk under three conditions: (a) marble drop on a table with sensors on
the wrist in a quiet environment, (b) same setup with background music, and (c) sensors held in the air in silence. These
scenarios indicate the VPU’s resistance to environmental noise, contrasting with the piezo disk’s sensitivity, essentially
functioning as a microphone.

it to capture sound from the air. In contrast, VPU is designed to be impedance-matched for direct contact with a
surface. This means they are optimized for a different acoustic velocity-to-pressure wave ratio than a piezoelectric
disk. This is achieved primarily by a mass-spring diaphragm placed over the sound port of a MEMS microphone
and hermetically sealed in a surface-mount package, preventing acoustic energy from entering the SAW sensor’s
package. As a result, this design is highly sensitive to vibrations when in direct contact with an object. These
evaluations collectively demonstrate the VPU’s robust signal fidelity across various frequencies and different
body locations, along with its ability to effectively reject environmental noise. These results establish the VPU as
a method of robustly detecting physical contact-based signals for further wearable system design.

4 System Implementation

Building off of the results from Section 3, the VPU has been selected given its excellent through-air sound
rejection, excellent signal-to-noise ratio, wide bandwidth and ability to detect Surface Acoustic Waves as they
travel across the body. This section provides an overview of the hardware and software design of HandSAW. In
addition to implementation details, this section details various design considerations for the wearable capture
of SAWs, a featurization schema to support a wide range of activities, and an encoding scheme for active data
transmission.

4.1 Hardware Design

HandSAW utilizes Sonion Voice PickUp (VPU) sensors initially designed to in-ear pick up the wearer’s voice
through the body without capturing environmental noise, such as in a crowded location [11, 90]. They utilize an
industry-standard Pulse Density Modulation (PDM) scheme to transfer data digitally and can be paired to share
the same clock. By selecting the ESP32-S3 microcontroller, which has an integrated I2S (Inter-IC Sound) hardware
peripheral [20], the system can efficiently decode this stereo PDM stream. As seen in Figure 7, HandSAW utilizes
one peripheral with four data lines, each decoding a mono-microphone, resulting in 4 sensing channels at a 16-bit
48kHz sampling rate. The customized PCB board has been designed featuring two VPUs soldered directly onto
the board, with the option to connect two additional VPUs via connectors as illustrated with Figure 6(a). These
sensors are distributed around the wrist, as seen in Figure 6(c,d), and are later used to determine whether the
position or number of sensors affects system performance in Section 5. The PCB board includes a hollowed-out
section for Velcro integration, allowing the wristband to conform to the geometry of the wrist. This design
ensures that the VPUs maintain good contact with users of varying arm sizes and can be worn comfortably over
long periods. The ESP32-S3’s WiFi module transmits the datastream via socket to a laptop for data collection.
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batteries placed between ESP32 and PCB. (c): The positions of four VPUs on the wrist. (d): User wearing the system.

A 3.7V 400mAh lithium-ion battery (36mm X 17mm X 7.8mm, 8.2g) provides enough power for approximately
5 hours of continuous operation, allowing for fully wireless functionality, as illustrated in Figure 6(b). Detailed
power analysis was conducted under different modes of ESP32S3. In deep sleep mode with 8.14x 10~°W, HandSAW
conserves energy by powering off the CPU, majority of RAM, and digital peripherals synchronized with APB_CLK.
The PDM to PCM mode with 0.15246W turns off WiFi, keeping only VPU data reception active. In WiFi Mode
with 0.30855W, the audio peripheral I2S is disabled, enabling WiFi to transmit data equivalent to four VPUs’
output (96000 X 4 data points per second). For testing HandSAW running mode with 0.4224W, the device operates
normally without power-saving configurations, utilizing both the audio peripheral and WiFi module transferring
20488 data every 106ms.

4.2 Software Design

Upon receiving data via socket stream as mentioned in Figure 7, the system employs a 1-second sliding window
with a 0.1-second step size for enhanced responsiveness and to prevent event segmentation across multiple
windows. A Short-Time Fourier Transform (STFT) is applied to eliminate silence within the window. The remaining
audio is then processed using a custom Mel-Frequency Cepstral Coefficients (¢t MFCC) method, facilitating real-
time predictions by the machine learning model, as depicted in Figure 7. While the Fast Fourier Transform (FFT)
is a feasible method for audio feature extraction, its comprehensive feature set may impede real-time system
performance due to extended processing times. Conversely, Mel-Frequency Cepstral Coefficients (MFCCs) provide
a faster choice. It offers advantages in reducing signal dimensionality and improving computational efficiency
compared to FFT without significant loss of information. However, traditional MFCCs, primarily designed for
human auditory perception, may not represent non-speech acoustic signals optimally. Additionally, standard 20
MFCC bins distribution is inadequate for Surface Acoustic Waves (SAWs) [38]. To overcome this, a customized
MFCC approach was developed using the librosa library [59]. An initial study with two participants across 13
classes showed that 128 mel filter banks distributed from 0Hz to 24kHz yielded the most balanced performance
across various events captured. For 1 second of data, 128 feature arrays of each channel are concatenated.
Therefore, the total number of feature lengths of 1-second input data depends on the channel count.

Feature extraction is followed by event classification using a machine learning model on a laptop. Three
different approaches are employed: (1). A linear Support Vector Machine (SVM) using SciKit-Learn’s default
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Fig. 7. The block diagram includes: (a) ESP32S3 connected to four VPUs with dual-core processing, and (b) ESP32S3’s
wireless WiFi communication to a computer for server-side cMFCC feature extraction and machine learning-based real-time
predictions.

parameters serves as a computationally efficient baseline, robust against overfitting and indicative of potential
on-device deployment in the future. (2). A Random Forest, also in SciKit-Learn, with 250 estimators and default
parameters, excels in handling complex feature relationships in datasets, beneficial for distinguishing similar
classes with overlapping features (e.g., a drill operating at a low vs. high speed). (3). A TensorFlow-based deep
neural network, with four fully connected layers, is designed for large, multi-user datasets. This neural network
architecture accelerates training integrated with batch normalization, introduces non-linearity via ReLU activation
for enhanced error learning, and reduces overfitting using a 0.5 dropout rate. It concludes with a softmax layer,
computing probabilities for all events enabling accurate activity classification. Ultimately, this system facilitates
real-time classification of user activities and events. The average latency for ten iterations of each step in the
pipeline was calculated: WiFi latency is approximately 30ms, and ML-model inference times are 34ms for the deep
learning model, 1.34ms for the SVM model, and 1.49ms for the RF model. The model’s size, at about 400KB for the
model .pkl file and 200KB for the parameters .json file, is sufficiently small to allow operation directly on mobile
computing devices, eliminating the dependence on server-based processing. Further enhancing HandSAW, RF
and neural network were deployed on the ESP32S3 board. The implementation first used the emlearn library [79]
to convert the model, originally trained in Python, into pure C code. This C-based model was then deployed onto
the ESP32S3 module to produce predicted labels. The predicted labels can either be saved as a logging file on the
board for later download to a computer or sent immediately to a server via WiFi.

5 System Evaluation

In this section, we investigate HandSAW’s proficiency in recognizing passive events across three environments
(office, workshop, kitchen) and two applications (tactile feedback, personal care), using a sample of 16 participants.
Our methodology involves three distinct evaluations: (1). Per-User performance, analyzing the system’s accuracy
when trained on data from individual users. (2). Across-user performance estimates the system’s performance on
a new user, where the system is trained on all but one participant and tested using the remaining participant’s
data. (3). The effect of the position and number of sensors on performance. All evaluations were carried out in
compliance with our institution’s Institutional Review Board (IRB).

5.1 Class Environments and Scenarios

Our evaluation of HandSAW’s versatility encompassed three environments (office, workshop, kitchen), chosen
based on Section 2. In the office, activities included keyboard typing, writing with a pen, turning a door knob,
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Fig. 8. 20 classes of hand-based events with corresponding frequency distribution are shown in FFT graphs. Please note that
the upper limit on the y-axis has been adjusted for visualization purposes, as the shape of the curve is more informative than
the actual amplitude of the values.

and using a compressed-air spray duster. Workshop tasks involved common tools such as a hammer, a cordless
drill, and a Dremel at two speed settings (low and high). In the kitchen environment, we selected two appliances,
a microwave and blender, and two interactions with fixtures, opening a refrigerator door and pulling a paper
towel from a dispenser. Additionally, we identified two common scenarios for hand-based event recognition:
tactile feedback and personal care activities. For tactile feedback, we selected three gestures that benefit most
from uninstrumented hands and the resulting tactile sensation when performed: tapping on a surface with a
finger, clapping both hands and swiping a finger on an opposing arm. For personal care activities, we selected
important hygienic and wellness activities such as using a toothbrush, washing hands, using a hairdryer, and
using an electric massager. The frequency signatures of these diverse activities are illustrated in Figure 8.

5.2 User Study Procedure

We recruited 16 participants (8 female, 8 male; mean age = 22.7, SD = 1.8) to wear HandSAW on their dominant
hand and perform the 20 activities detailed above 50 times in a randomized order to ensure diverse data collection
and avoid repetitive patterns or temporally similar samples. Participants performed these activities naturally, with
initial guidance, but participants were encouraged to adapt and perform them according to their natural tendencies,
leading to slight variations in technique. The study was conducted in a dynamic workshop environment with
background activities like conversations, movements, building HVAC air conditioning, and a 3D printer sometimes
operating, reflecting real-world conditions with no adjustments to reduce these potential noise sources. The
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classes of one user. across all 16 users.

system’s fully wireless, battery-powered nature allowed participants to engage in tasks comfortably, either sitting
or standing. Acknowledging the study’s extent (1000 actions per participant), breaks were permitted when taking
off the device. Each participant’s involvement spanned approximately two hours, with the entire dataset collected
over two weeks.

Variations in our study arose from tool performance changes due to battery depletion of a cordless drill and
electric brushes, as well as diminishing air pressure in four different spray bottles used by the 16 participants.
Additionally, participant-specific approaches introduced variabilities, such as varying force levels in keyboard
typing and different techniques in tapping actions (using fingernails or finger pads).
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Table 1. The classification performance for motion recognition using 1,2,4 VPU channels for training across various machine
learning classification approaches for per-user and cross-user evaluation. For cross-users, the LOPO experiment was con-

ducted.

Model
Channels

Support Vector Machine

Random Forest

Deep Learning

1 channel per-user

99.24% (SD=0.42%)

98.63% (SD=0.82%)

95.06% (SD=2.41%)

2 channels per-user

99.62% (SD=0.08%)

99.45% (SD=0.13%)

97.43% (SD=0.36%)

4 channels per-user

99.75% (SD=0.14%)

99.76% (SD=0.18%)

98.82% (SD=0.94%)

1 channel cross-users

84.89% (SD=1.6%)

83.06% (SD=1.75%)

86.95% (SD=0.92%)

2 channels cross-users

88.31% (SD=0.79%)

85.20% (SD=1.05%)

91.83% (SD=0.42%)

4 channels cross-users

89.75% (SD=5.62%)

86.49% (SD=7.33%)

91.62% (SD=5.82%)

5.3 Per-User Classification Performance

For HandSAW’s per-user accuracy, we performed a 10-round cross-validation for each of the 16 users. In each
round, we divided the user’s data into 10 rounds, trained on nine, and tested on one without shuffling. The
results were averaged for all combinations. We then calculated and reported the mean per-user accuracies across
participants for the linear SVM, Random Forest, and Deep Learning model as described in Section 4.2.

Linear SVM achieved a mean per-user accuracy of 99.75% (SD = 0.14%), closely followed by the Random Forest
with 99.76% (SD = 0.18%). The Deep Learning model, however, showed a lower accuracy of 98.82% (SD = 1.12%),
likely due to the limited dataset size for individual users. Detailed results are presented in Table 1, and the
corresponding mean confusion matrix is depicted in Figure 9. To further contextualize our results, we conducted
a t-distributed Stochastic Neighbor Embedding (t-SNE) analysis using data from a single participant, as shown
in Figure 11. t-SNE, a dimensionality reduction technique for visualizing high-dimensional data, helped reveal
clusters or patterns. The analysis indicated minimal class overlap, aligning with the strong performance of all
three models. Interestingly, classes with inherent variabilities, like writing force or toothbrush battery level, had
their variety represented in the plot with sub-clusters within their clusters.

5.4 Cross-User Classification Performance

To evaluate how well HandSAW can recognize events independent of the wearer, we performed a leave-one-
participant-out (LOPO) evaluation, where we trained each machine learning model on data from all but one user
and tested it on the remaining user. This approach revealed a mean accuracy of 89.8% (SD=5.62%) for the linear
SVM, 86.49% (SD=7.33%) for the Random Forest, and 91.45% (SD=6.65%) for the Deep Learning model, averaged
across 16 participants. The confusion matrix for the Deep Learning model, detailed in Figure 10, shows that out of
20 classes, 8 had accuracies over 99%, while only 6 fell below 92%. In some classes, like hammer use or refrigerator
opening, lower performance is attributed to user-specific significant variations in action execution. Notably, the
spray duster’s performance varied due to its four replacements and inconsistent air pressure. Additionally, a t-SNE
analysis of all 16 users’ data, illustrated in Figure 12, revealed distinct clusters for classes with high accuracy,
underscoring consistent classification despite diverse user inputs. Conversely, classes with lower accuracies in
the confusion matrix and ones we observed having significant variation across users represented that variation in
the t-SNE plot; they did not form distinct clusters or overlapped with classes with other clusters, which matches
the performance seen in the confusion matrix.

Finally, we evaluated the three models using varying sizes of training data. First, we selected a specific number
of users, n, for the training set and then tested the remaining unseen users individually, computing the average
classification accuracy from the results. Users were randomly chosen for training for each increment. This process
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was repeated for each model to determine the final mean accuracy over the number of users in the training
set, represented as a curve. As shown in Figure 13, the consistent increase without plateauing suggests that
enlarging the training dataset, potentially with augmentation, might narrow the gap between per-user and
across-user accuracies. Achieving approximately 85% accuracy with only about 8 users in the dataset suggests
near saturation of the training set. This indicates strong model generalizability and effectiveness with new, unseen
users, confirming minimal variance in frequency response.

5.5 Channel Importance For Classification Performance

Finally, we investigated whether all four VPUs are crucial for HandSAW’s observed high accuracy in activity
recognition. We repeated the per-user and across-user evaluations with the three models, using configurations of
one, two, and four channels/VPUs. As shown in Table 1, the results indicate that although performance generally
increases with more VPUs, a single VPU configuration still demonstrated strong recognition capabilities. Notably,
in per-user performance using a linear SVM, there was virtually no difference, and across-user performance
reached 86.95% accuracy.

We further explored each channel’s contribution through a Gini impurity analysis of the importance of
cMFCC features across the four channels. Figure 14 shows that the channels had similar importance, with feature
importances of 24.8%, 27.4%, 22.6%, and 25.2%, respectively. Additionally, the uniform importance distribution
across all cMFCC bins suggests that each channel captures similar spectral information. This supports the
finding that performance is comparable across channels, and even a single VPU can yield significant recognition
performance as listed in Table 1. It also implies that VPU placement on the wrist is unlikely to impact system
performance significantly, offering designers flexibility in sensor integration. However, for subsequent application
development, we continue to use the four-channel version, as having multiple channels significantly increases
the likelihood that at least one microphone will contact the skin. Utilizing more than one VPU enhances the
robustness of the contact and provides reliable and stable output.

5.6 Recognition of “Silent” Activities via Active Data Transfer

Thus far, HandSAW has primarily focused on detecting events by capturing SAWs that emanate from objects
during their operation (such as a drill running) or are generated through touch actions (such as a user tapping
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and positioned 2m away from the hand. (d): decoded message using UART protocol from the received signal. (e): Bit error
rates performance with UART protocol at various bit rates, with 40kHz and 25kHz transducers using ASK.

on glass). However, one limitation of this approach is detecting events that do not generate signals during the
event, such as softly placing a hand on an object or surface. To address this gap, we instrument these objects
with “active” transducer tags that transmit the object’s identity for “silent” objects.

Previous studies have confirmed the human body’s effectiveness as a medium for signal transmission [2,
9, 29,107, 111, 119, 119]. The human body effectively functions as an antenna across a wide frequency range
when it is exposed to electromagnetic fields [23, 78]. The human body could resonate with a frequency that
spans from 40 Hz to 400 MHz, attributable to the body’s properties as a dielectric with intricate structure [22].
Previous research has extensively explored applications that leverage this characteristic of the human body. For
example, IDSense and EMSense utilize RFID or electromagnetic technologies to detect interactions between
humans and objects [53, 57]. Meanwhile, other researchers employed the human body as a receiving antenna for
electromagnetic noise to identify touch locations on a wall in the home [16]. However, rather than passively
recognizing signals, HandSAW actively controls and modulates signals to transmit data to wearable devices
through physical human touch.

5.6.1 Implementation. In the previous sections, HandSAW’s VPUs were configured to standard PDM clock and
decimation ratios, resulting in a 48kHz sampling rate (i.e., a bandwidth of 0Hz-24kHz). While this configuration
effectively captures passive SAWs, a considerable portion of the frequency range overlaps with human hearing,
limiting its effectiveness for carrier frequencies, as tag operation would generate audible sounds, potentially
disturbing users. Thus, the active tag is ideal for operating outside human hearing while utilizing cheap and readily
available transducers. Therefore, we overclocked the VPU to extend the sampling rate to 96kHz (0Hz-48kHz
bandwidth), which would also provide the added benefit of faster data rates. We identified the VPU’s clock limit
at 8 MHz, beyond which it no longer provided a valid PDM output. Considering the peripheral constraints of
the ESP32S3, we selected a sampling rate of 96 kHz and a decimation ratio of 64, yielding a final clock of 6.14
MHz—within the operational limit but exceeding the VPU’s specified 3.072 MHz limit. An expected and observed
tradeoff is an increase in the noise floor.

25kHz or 40kHz transducers as active tags were connected to a function generator, which generates the
appropriate carrier frequency at 30V,,(Figure 15(a)). The function generator receives a modulation signal via an
Arduino Uno, which modulates the data with Amplitude Shift Keying (ASK). In this scheme, a ‘0’ and ‘1’ bit are
represented by 0V and 30V amplitude, respectively. As illustrated in Figure 15(b, c), a digital bandpass filter is
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applied to first extract the active signal. Then, a Hilbert transform (to extract the envelope), and a Savitzky-Golay
(Savgol) filter (for smoothing) were applied. To decode the values, a threshold is set to define a “0” or “1” bit. Data
was transmitted using the UART protocol as shown in Figure 15(d).

5.6.2 Evaluation. To evaluate performance, data rates ranging from 300 bps to 3200 bps were implemented for
each transducer. A random ASCII pattern was transmitted to measure the Bit Error Rate (BER). A user wearing
HandSAW positioned their hand 10 cm from the transducer, with 300 packets transmitted in each scenario. The
average BER is calculated and presented in Figure 15(e). Overall, the error rate only exceeded 1% at 2500bps for
40kHz and at 3200bps for 25kHz. This is attributed to the transducers’ relatively large Q value, causing ringing at
the end of data transfer and increasing bit errors as the bit rate rises. Although not a definitive test of the maximum
data rate for ultrasonic through-body transfer, these experiments outline the feasibility of touch-enabled data
exchange via SAWs, with adequate performance for transmitting object IDs, metadata, low-frequency sensor
data, and URLs. For context, a short URL (136 bits) can be transmitted in approximately 4 ms.

Additionally, we tested several commonly used materials for ultrasonic signal transmission by placing a 40 kHz
transducer on surfaces such as granite, wood, plastic, and metal. We also evaluated signal transmission through
walls and LCD screens to assess the effectiveness of active data transfer across different environments. All tested
media successfully conveyed modulated data. Furthermore, with varying distances between the transducer and
the user’s hand wearing HandSAW, the device reliably received encoded data through the surface at ranges from
10 cm to 2 m. This paves the way for developing future interactions and applications, transforming physical
objects into digital, intelligent spaces using inaudible modulated signals.

Although HandSAW has demonstrated its capability for transferring modulated signals, the active data transfer
mechanism is not intended to challenge the higher speeds of modern wireless technologies like WiFi or Bluetooth.
The intent is to transfer small payloads, like UUIDs or URLSs, via direct physical interaction. For example, a user
can initiate Bluetooth pairing by explicitly touching the target pair of headphones (thus transferring a short data
string of 136 bits). Unlike the indiscriminate broadcast of radio packets, this approach gives users control over
where their data is transferred via touch, which could be beneficial in scenarios requiring stricter measures for
reliable and safe information handling,.

6 Applications and Usage

This section highlights real-world applications of HandSAW, showcasing its versatility and potential for future
deployment. Key examples include tracking daily activities, such as morning routine and workshop tasks
monitoring, and transforming physical spaces into intelligent environments through active, contextually encoded
information transfer.

6.1 Daily Activity Recognition

Interactions with objects reflect an individual’s immediate actions. Analyzing the manipulated object or specific
hand activity enables systems to infer a user’s current tasks, the broader environmental context, and potential
future intentions. For example, opening a refrigerator followed by using a blender may suggest cooking activities.
Following Section 5, this section further demonstrated HandSAW’s application scenarios with morning routines
and workshop craftsmanship tasks in natural daily settings. HandSAW enables comprehensive recording of daily
activities, facilitating precise tracking of an individual’s routine, which is particularly beneficial for long-term
health monitoring.

6.1.1  Activity Recognition for Morning Routine. The first scenario examines a common daily activity—the morning
routine, which includes personal hygiene and breakfast preparation. Building on the rigorous results from Section 5
with offline ML model training, this section demonstrates HandSAW as a fully integrated, real-time recognition
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Fig. 16. Morning routine activities include personal hygiene and breakfast preparation. HandSAW detects users’ activities
and logs predicted events.

system tested with three users in a realistic home environment. Users were asked to simulate their morning
routines in a comfortable manner. Suggested hygiene activities included hair drying, using an electric toothbrush,
and hand washing. Users brought their own electric toothbrushes, while a hair dryer was provided. We supplied
the necessary equipment and ingredients for breakfast, encouraging users to prepare a smoothie and oatmeal
porridge. Participants had no specific instructions on how to perform the activities or the sequence of actions
and no time restrictions for each task. They were free to talk, play music, or move around the home. Throughout
this process, the HandSAW system continuously logged real-time labels of predicted activities, while a researcher
observed and manually recorded ground truth labels with timestamps.

Real-time predictions are produced for each individual frame from the current 1-second input data. A laptop
recorded the logging labels at approximately four predictions per second, with slight variations due to fluctuations
in WiFi connectivity or data processing speed. As illustrated in Figure 16, the raw predictions for each frame
are represented by circles. To address incorrect frame predictions, a filter was implemented to exclude overly
short predicted frames, thereby enhancing the accuracy of recorded events. Therefore, a predicted user event is
generated for each timestamp as shown with bars in Figure 16. The behavior of an example user is illustrated in
Figure 16, showing real-time event predictions compared with ground truth events. Results demonstrated Hand-
SAW’s capability to accurately track activities with a 100% coverage rate for the event types and no significant
latency. The total morning routine activity of one example user lasted 9 minutes and 40 seconds, encompassing
1521 predicted frames. The accuracy of raw predictions for each frame was 89.09%. The accuracy of event
prediction reached 97.90% for each timestamp. Intersection over Union (IoU) is calculated by determining the
intersection (the maximum start time and the minimum end time between the ground truth and prediction) and
the union (the total duration of ground truth and prediction excluding the intersection). The average IoU 0.94 is
computed for segments of the same events. Researchers observed diverse behavior patterns among participants,
including variations in the action order, duration, and manner of performing activities. Despite these differences,
HandSAW consistently logged user activities accurately.
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Fig. 17. Craftsmanship activities in the workshop were logged by HandSAW with ground truth and prediction events
comparison.

6.1.2  Activity Recognition for Workshop Craftsmanship. In the second scenario, three users were asked to perform
craftsmanship tasks in a fabrication workshop using tools such as a drill, a Dremel tool, and a hammer. The
workshop was conducted in a fabrication lab with a 3D printer that operated continuously and building air
conditioning. For safety, each participant wore safety goggles and first attended a tutorial on safety measures and
proper tool use. Each participant was given wooden disks, dowels, and step-by-step instructions for constructing
a pen holder. Similar to the morning routine scenario, the HandSAW system captured real-time predicted labels
while a researcher recorded ground truth events and timestamps.

As illustrated in Figure 17, the HandSAW system accurately captured all steps of making the pen holder with
a 100% coverage rate and no significant latency. The total duration of the user working on a pen holder is 25
minutes and 5 seconds, with 4766 predicted frames. The raw predicted frames achieved a 96.35% accuracy for each
timestamp. Frame misclassification primarily occurred when single, short, sharp noises were present, such as the
system mistakenly classifying high-amplitude noises as hammers. To address this issue, a filter was implemented
to eliminate extremely short events, such as using a drill for only 0.5 seconds, enhancing the precision of the
predictions. This adjustment increased the accuracy of predicted events to 98.49%. The slight deviation from 100%
accuracy is attributed to minor latency, leading to misclassifications at the beginning and end of activities. The
IoU score is 0.98, demonstrating that HandSAW successfully and robustly captured hand-based interactions.

These results validate HandSAW’s effectiveness for daily activity monitoring. Its unique approach to detecting
skin-propagated acoustic signals preserves user privacy by eliminating the need for cameras or microphones,
thereby minimizing the risk of sensitive information exposure. This feature is especially advantageous for health
and wellness monitoring, which requires strict privacy standards. Overall, HandSAW’s capability to track daily
activities provides significant potential for healthcare, providing valuable insights to inform recommendations
for healthier habits and ergonomic practices.
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v “6rocery Reminder:
a dozen of eggs.”

Send URL to HandSAW
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Fig. 18. (a) The transducer on a fridge enables HandSAW to deliver grocery reminder messages upon the user touching the
fridge. (b) Without requiring transducers or any hardware modifications, a TV can transmit a URL to the HandSAW system
using inaudible sound. Users can receive the URL of the image displayed on the TV with just a single touch.

6.2 Smart Space: Context-Driven Information Transfer

Section 5.6 details how HandSAW can be paired with ultrasonic tags to enable data transfer through touch. This
ability is particularly useful in providing valuable contextual information about the physical world around users.
It transforms numerous purely mechanical objects into channels for digital information in our daily lives. With
the intermediary support of HandSAW, information is no longer isolated within each object; instead, it can be
connected and transferred under the user’s control. A lot of applications can be supported with various types of
data transfer. When a user touches the fridge, HandSAW can recognize its object ID and interface with a voice
assistant like Alexa, prompting the user, “Grocery Reminder: a dozen of eggs” (Figure 18(a)). Furthermore, since
HandSAW supports rich data types such as URLs, it can seamlessly transfer contextual information to companion
devices. For example, when a user touches a drinking fountain, the water quality information can be displayed
on the user’s smartwatch via modulated ultrasonic signals.

In addition to incorporating transducers that facilitate the transmission of ultrasonic signals, common electrical
devices also possess the capability to emit distinct signals that are highly characteristic. Through software
modifications alone, HandSAW is designed to establish real-time communication with these devices upon user
interaction. As shown in Table 2, four of the most commonly used devices in daily life can transmit information
such as user IDs, URLs, and authentication data to the HandSAW through either audible or inaudible sounds. For
instance, an iPhone emits an 18kHz inaudible sound, encoding information at 100 bps. As Al-generated voices
and faces become increasingly prevalent, HandSAW introduces an extra layer of authentication safety, requiring
the user’s hand and phone to be co-located and in physical contact. Further demonstrating the versatility of
HandSAW, Figure 18(b) shows a scenario where a TV or any monitor equipped with a speaker emits an 18kHz
inaudible sound. When the user touches the edges of the screen, the URL of the displayed image is transmitted
directly to the user’s smartphone.

Additionally, vibrations from some devices can induce substantial amplitude sounds, which the VPU can
capture through the skin. Leveraging the natural characteristics of game controllers and the iPhone haptics
engine, 5Hz vibrations are encoded with information about game scores and user IDs. Subsequently, HandSAW
captured and accurately retrieved the data. These enhancements of device functionality require no hardware
modifications, only minor software adjustments. More importantly, the modifications do not exceed the devices’
original capabilities or functionalities. Through HandSAW system, a ubiquitous intelligent space was created
that dynamically facilitates contextual information flow fully controlled by users.
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Table 2. Common devices capable of transferring information without any hardware modification.

MacBook iPhone Monitor with Speaker Game iPhone Haptics
Speaker Controller
Bandwidth | audible sounds audible sounds audible sounds audible sounds <5hz vibration <5hz vibration
and inaudible and inaudible and inaudible and inaudible
ultrasound ultrasound ultrasound ultrasound
Application | URL transfer, text | URL transfer, text | URL transfer, text | URL transfer, text | Sending game user ID transfer,
Examples transfer, user ID | transfer, user ID | transfer, user ID | transfer, user ID | score, player ID, | authentication,
transfer, transfer, transfer, transfer, gaming state information-
authentication authentication authentication authentication encoded
notification

7 Discussion

This section contextualizes HandSAW by comparing it with other sensing techniques. Additionally, several
discussion points are presented, including advanced machine learning methods for reducing data collection, as
well as an examination of current limitations and potential future work.

7.1 Comparison with Other Sensing Techniques

HandSAW demonstrated broad applicability and reliable performance in recognizing hand-based interactions
across diverse users and environments. A comparison of several standard sensing techniques is listed in Table 3
for better contextualization of this research. Examples of the most commonly used sensing mechanisms include
IMU, camera, microphone, and magnetic sensors. Previous systems often require extensive instrumentation
of the user, are limited to specific types of devices, lack generalizability to unseen users, or have inadequate
real-time noise rejection capabilities. For example, magnetic-based or coil-based sensing techniques are limited to
applications involving electrical devices or those that generate a magnetic field [65, 66, 110]. Compared to other
acoustic-based sensing systems [5, 54, 63, 113], HandSAW offers a wide frequency range, capturing rich acoustic
signatures across both the audible and inaudible spectrum. Moreover, HandSAW can effectively eliminate airborne
sounds, which enables the rejection of environmental speech and other noises. Additionally, generalizability
is important, as collecting data from every new user before system use is impractical. The uniqueness of the
acoustic features captured by HandSAW is that the frequency distribution for a specific class remains consistent
across different users. Maintaining a 91.6% accuracy with a new, unseen user, HandSAW demonstrated robust
performance. It achieved the highest cross-user accuracy among the systems compared here. Moreover, HandSAW
has demonstrated feasibility for active sensing, unlocking various application scenarios. Viband [52]reports
achieving a data rate of 400 bps using 16-QAM with a 300 Hz (audible) carrier and a 7-16% error rate. By contrast,
HandSAW enables transfer data at 3200 bps with a 25 kHz (inaudible) carrier and a 1% error rate. HandSAW has
also demonstrated robust data transfer capabilities with longer distances. HandSAW demonstrated the ability to
instrument an entire countertop and detect data from 2 meters away, whereas Viband requires direct contact with
the transmitter. Furthermore, real-time, onboard ML can increase the practicality of this system in real-world
scenarios. Compared to previous approaches [5, 21, 113], HandSAW stands out by offering the robustness and
efficiency necessary for real-world deployment, making it a viable solution for real-world applications. HandSAW
achieves state-of-the-art performance comparable to other systems listed here, while only six prior works support
real-time predictions, and none offer onboard machine learning inference capabilities.

7.2 Limitations and Future Work

In this section, we describe current limitations of the HandSAW system and avenues for future work to address
them.
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Table 3. Comparison of other typical sensing techniques in the literature. Each paper is represented by either the project
name or the first author’s last name.

Technique Audio Performance Active Sensing Noise Rejection | Real-time | On-board ML | Cross-user Accuracy
Range
OSense [8] IMU - 10 hand activities X X X X X
87%
ViBand [52] MU - 29 object recognition v v v X 17 users, 91.5%
91.5%
Laput [51] IMU - 25 hand activities X X v X 12 users, 79.2%
95.2%
VibEye [80] actuator, - 16 materials (92.5%) X v X X X
accelerometer 25 objects recognition
WristSens [67] accelerometer - " 10 home activities [ X [ X v X X
camera not mentioned
Maekawa [65] magnetic sen- - 14 home activities X X X X X
sor over 75%
MagnifiSense [110] | magneto- - 12 home devices X v X X X
inductive coil 83.9%
Maekawa [66] coil of wire | - " 14 electrical devices X [ X X X 5 users, 82.2%
84%
Ohnishi [81] camera - 23 ADLs X X 4 X X
89.7%
Fan [21] EMG sensors - 15 object recognition X X X X 12 users, 47.9%
82.5%
Z-Ring [108] electrodes on - " 5 hand activities [ X [ X v X X
the ring 93%
EchoWrist [54] microphone, 18-21kHz or 12 object recognition, v v v X 12 users, 82.8%
speaker 20-24kHz 97.6%
Lukowicz [63] accelerometer,  2khz 8 workshop activities X X X X X
microphone 83.5%
Ward [113] accelerometer, 2khz ‘21 workshop activities, | X [ X X X 5 users, 87%
microphone 98%
Bhattacharya [5] | IMU, 22.05KHz 23 home activities X X X X 15 users, 89.7%(F1)
microphone 94.3%
HandSAW SAWs sensor 0-48kHz 20 hand-based activi- v v v v 16 users, 91.6%
ties, 99%

7.2.1  Advanced ML Methods for Reducing Data Collection. While HandSAW achieved a 91.6% accuracy on
test-train splits, even with unseen users, collecting labelled training data for new classes of objects presents
scalability challenges that future work should address. A promising direction is few-shot learning, which identifies
underlying patterns in data with only a limited number of training samples. Unlike traditional deep learning
models, which require extensive datasets, few-shot learning emphasizes ’learning how to learn.’ This is achieved
by training models on diverse objects, encouraging the system to recognize essential features and patterns across
classes, and enabling it to generalize effectively from minimal labelled examples. This approach is particularly
advantageous because many objects produce distinct frequencies of mechanical vibrations based on their operation,
independent of how users hold these devices. This independence means that custom models for individual users
aren’t necessary; instead, models can be trained for the objects themselves. As a result, leveraging the robust
feature extraction and association capabilities of few-shot learning can significantly reduce the burden of data
collection from users. In addition to few-shot learning, generative learning and diffusion models offer promising
avenues for minimizing the need for extensive training data.

7.2.2  False Positives Misclassification & Noises. Several design aspects have been implemented to mitigate false
positive situations, especially caused by single, short, and noisy events. For activity recognition, HandSAW
operates at a 48kHz sampling rate. The system uses a 1-second sliding window with a 0.25-second step size
to enhance responsiveness and prevent event segmentation across multiple windows. For each 1-second data
frame, a custom MFCC feature extraction algorithm captures features across the 0Hz to 24kHz. Although impulse
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events are brief in the time domain, they contain rich frequency characteristics that aid in accurate classification.
We recognize, however, that this approach could potentially miss very short events. In such cases, reducing the
window size would be necessary. The results show that HandSAW effectively classified typical length user object
interaction events, including short events like finger taps and claps. Moreover, the filter introduced in Section 6
allows the rejection of false predictions by effectively “low-pass filtering” the data, demonstrating that HandSAW
is robust in detecting user events. However, better algorithms can be developed to further address, mitigate, and
overcome this issue.

7.2.3 Contact Conditions with the Wrist. One constraint of HandSAW is that the VPU must maintain contact
with the user’s skin to detect valid signals. The current implementation with four VPUs increases the likelihood
that at least one VPU will maintain contact with the user’s skin, enhancing signal detection reliability. The results
in Section 5 demonstrate that using a single VPU yields accuracy that is only marginally lower compared to
using four VPUs. Despite this, the current prototype is not optimized for user comfort or maintaining consistent
contact with the user’s skin. Future design improvements could focus on developing a wristband that better
conforms to the human body and its topography. Incorporating soft, flexible, springy, and conformal materials
may also significantly enhance both comfort and usability.

8 Conclusion

This work presents HandSAW, a fully wireless system capable of passively recognizing 20 events with >99%
per user accuracy and 91.6% accuracy across users, demonstrating robust performance even for a new user
without any calibration data. A Gini impurity analysis shows that the sensors used in HandSAW are position
invariant, allowing significant flexibility in sensor placement for future designs. HandSAW also supports active
data transfer through 40kHz ASK, sustaining 3000bps with about 1% bit error. To demonstrate the utility of these
capabilities, two illustrative applications are developed: wearable tracking of activities of daily living and active
data transfer with modulated ultrasonic signals upon touch. We believe these findings spur greater interest in
on-body applications of SAW-based sensing and enable various applications in the future.
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