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ABSTRACT 
BeamBand is a wrist-worn system that uses ultrasonic 
beamforming for hand gesture sensing. Using an array of 
small transducers, arranged on the wrist, we can ensemble 
acoustic wavefronts to project acoustic energy at specified 
angles and focal lengths. This allows us to interrogate the 
surface geometry of the hand with inaudible sound in a ras-
ter-scan-like manner, from multiple viewpoints. We use the 
resulting, characteristic reflections to recognize hand pose 
at 8 FPS. In our user study, we found that BeamBand sup-
ports a six-class hand gesture set at 94.6% accuracy. Even 
across sessions, when the sensor is removed and reworn 
later, accuracy remains high: 89.4%. We describe our soft-
ware and hardware, and future avenues for integration into 
devices such as smartwatches and VR controllers.  

CCS CONCEPTS 
Human-centered computing → Human computer interaction 
(HCI) → Interaction techniques → Gestural input 

KEYWORDS 
Hand Input; Hand Gesture; Acoustic Reflectrometry; Acoustic 
Beamforming; Acoustic; Interaction Techniques; Wearables 

1 INTRODUCTION 
Robust hand gesture detection holds the promise to enrich 
user interfaces and improve immersiveness, whether it be 
smartwatches to AR/VR systems. Unfortunately, identify-
ing hand gestures without instrumenting the hand (e.g., 
gloves, controllers) has proven to be challenging, which 
motivates the need to identify new methods. Prior research 
includes leveraging electromyography [38][39], bio-acous-
tics [23][15], electrical impedance tomography [50][51], 
contour sensing [7], and worn cameras [20]. While each ap-
proach has its strengths and drawbacks, a common weak-
ness is robust accuracy across users and worn sessions.  

In this paper, we present our work on BeamBand, a new 
approach for worn hand gesture sensing, which leverages 
acoustic beamforming. We use small in-air ultrasonic trans-
ducers arranged along the contour of the wrist (Figure 1A), 
which offers a stable vantage point from which to capture 
hand pose. Using active beamforming, we steer and focus 
ultrasound towards areas of interest on the hand (Figure 
1B). We also multiplex our transducers, capturing beam-
formed reflections from slightly different viewpoints (Fig-
ure 1B), offering rich signals for machine-learning-driven 
hand gesture recognition (Figure 1C).  

To assess BeamBand’s recognition performance, we 
conducted a ten-participant study, adopting two gesture 
sets from the literature in order to enable direct comparison 
(i.e., rather than developing a custom set). The first set con-
tained seven hand poses, while the second set has six ges-
tures along three axes of rotation. On these two gesture 
sets, BeamBand demonstrates accuracies of 92.5% and 94.6% 
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Figure 1. Beamband is a wrist worn sensor containing eight transducers (A) that uses beamforming to direct and focus ultra-
sound at areas of interest (B) in order to recognize a variety of hand gestures (C). 
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respectively. More unique is that accuracy remains high – 
86.0% and 89.4 respectively – in sessions after the band is 
removed and reworn. 

2 RELATED WORK 
First, we review prior work that intersects with our appli-
cation area of gesture recognition. We then move to work 
using acoustic reflectometry, with a particular focus on the 
HCI literature. Finally, we discuss beamforming more spe-
cifically, as this is our main technical approach, and review 
the few systems that have employed it in the HCI domain. 

2.1 Hand Gesture Sensing 
Robust sensing of the pose and movement of the hands has 
been a long-standing goal in HCI. The most immediate ap-
proach is to instrument the hands directly, with for exam-
ple, gloves containing accelerometers [34][43], strain 
gauges [24] and capacitive sensors [37]. These methods 
typically place the sensors in locations well-suited for their 
gesture tasks. For example, Perng et al. [34] place the accel-
erometers at the fingertips for interactions such as pointing 
and which finger is raised. Whitmire et al. [48] use conduc-
tive fabrics as a capacitive sensor to detect finger and 
thumb interactions.  

Slightly less conspicuous and invasive are systems that 
attempt to sense the hand from the wrist or arm. BeamBand 
falls into this category. One of the most popular approaches 
use optical sensors to detect hand geometrical changes that 
occur when a user performs a hand gesture. For example, 
WristWhirl [13] uses an array of infrared proximity sensors 
to detect the angle of the hand with respect to the wrist. 
Another optical approach uses a camera to observe hand 
gestures and reconstruct a 3D model of the hand [20]. The 
camera may also be mounted on a head mounted display 
[6]. There is also a significant body of research that lever-
ages arm contour changes using pressure [7][18], infrared 
[10][13][29][47], and capacitive sensors [37]. 

Apart from querying the external state of the hands, 
people have investigated using signals from inside the body 
to determine hand state. A common approach is Electromy-
ography (EMG) [19][38][39][41], which passively detects 
electrical signals from muscle contractions. Active sensing 
has also been explored, as seen in Electrical Impedance To-
mography [50][51], which has been used to sense changes 
in the interior arm structure for hand gesture sensing.  

Most related to BeamBand are the approaches that use 
acoustic signals. For example, Amento et al. [1], Hambone 
[8], Skinput [15], and Tactile Teacher [16] place passive 

acoustic sensors on the skin to listen to micro-vibrations 
resulted from finger taps, flicks, and pinches. More re-
cently, research has shown that off-the-shelf smartwatches 
can also detect these signals [23][32][49][52]. Way et. [46] 
offers an excellent survey of wrist worn sensing ap-
proaches (including acoustic).  

2.2 Acoustic Reflectometry in HCI  
BeamBand is built on the principle of ultrasonic reflectom-
etry, which examines objects of interests by emitting struc-
tured acoustic waves and measuring reflected signals. The 
time of flight of sounds can be used to infer the distance of 
objects, which is the most basic information that can be ac-
quired. One example is single-emitter sonar, which has 
been in use for roughly a century in marine applications, 
and also echolocation, which animals have used for consid-
erably longer. In addition to time of flight, the amplitude of 
reflections (including non-linear damping of different fre-
quencies) and multipath effects can also reveal facets of the 
environment (e.g., material properties, room geometry).  

In the HCI literature, acoustic reflectometry is most 
commonly encountered in the form of low-cost sonar sen-
sors, used for range-finding. For example, “Sound of Touch” 
[31] and “FingerPing” [53] both use in-body sonar to detect 
hand gestures. Using in-air sonar sensors, Point Upon Body 
[25] detects touch input on the user’s arm. Measuring the 
Doppler shift of reflections has been used to detect the di-
rection of hand gestures [3] and swipes on the forearm [31] 
(see [36] for a survey of ultrasonic doppler sensing in HCI). 

2.3 Acoustic Beamforming  
Beamforming can be achieved in any transmission medium, 
though it is most commonly applied to radio waves (e.g., 
radar [21], wireless communication [12]) and sound (e.g., 
medical ultrasound [11]). When multiple wavefronts are 
created, signals experience constructive and destructive in-
terference, which can be used to form controlled beams of 
energy, hence the technique’s name. See Figure 2 and Video 
Figure for a concise visual primer (and [4][12][21][44] for 
more comprehensive background). Beamforming can also 
be used in reverse (i.e., inverse beamforming) [30], using an 
array of passive receivers to e.g., localize voices in a room 
[2] or finger snaps [14]. 

Most similar to BeamBand in operation are multi-emit-
ter/receiver towed sonar arrays used in maritime applica-
tions [22]. In single-emitter sonar (regardless of the number 
of receivers), the first object encountered will typically re-
flect the largest signal. However, with multiple emitters, it 
is possible to have coordinated beamforming “pings” focus 
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energy on an area of interest at varying distances. This is 
similar to medical ultrasound [11], which uses beamform-
ing to focus acoustic energy at a particular depth in the 
body, and then essentially raster scan to produce an 2D im-
age (which was used in EchoFlex [27][28] for hand gesture 
sensing). These setups cost many thousands of dollars, use 
MHz-range ultrasound, and require liquid or gel to couple 
to the sensed medium. BeamBand utilizes lower frequency 
40 kHz ultrasound, which can more easily propagate 
through air and interact with surfaces without the use of an 
interfacing medium. Ultrasonic beamforming has also been 
used for haptics [5][26] and in-air levitation [17] in the HCI 
literature.  

3 PILOT EXPERIMENTS 
Prior to developing our system, we sought to gain a better 
understanding of how beamforming operates in a multi-
emitter, airborne setup. We started with simulations in 
software, changing the relative phase of seven evenly 
spaced emitters outputting 40 kHz waves (~8.5 mm wave-
length in room temperature air at 1020 mbar), allowing us 
to control the angle and focal point of the wavefront (Figure 
2, top). To verify our theoretical model, we also ran real-
world, physical experiments, which captures more complex 
interactions such as transducer impedance mismatch, mul-
tipath interference, and environmental noise. Our physical 
transducer array matched our software simulations: seven 
evenly spaced, 40 kHz transducers. As before, we changed 
the relative phase of the emitters to create different emis-
sion angles and focal lengths. 

To capture and visualize ultrasound, we attached an in-
dependent transducer to a CNC gantry. We moved this gan-
try along a 4mm grid within a 12.4×12.4cm square. At each 
point on the grid, the transducer array would generate a 
beam at a specified angle or focal length, and the sensor 
would record the acoustic interaction at that location. The 
gantry would then move to the next point in the grid, the 
transducer array would repeat the same emission pattern, 
and the sensor would again make a recording. This proce-
dure was repeated until all grid locations were recorded. 
Once complete, all waveforms could then be synchronously 
replayed to visualize the wavefront propagation (see Figure 
2 and Video Figure). We found that our software and phys-
ical models generally matched (see examples in Figure 2). 

During this stage of development, we also tested many 
different ultrasonic transducers with various power rat-
ings, physical size, and beam widths. To assess perfor-
mance, we placed two identical transducers 1cm apart, fac-
ing one another. One was driven at 100 Vpp, while the other 
was actuated by the emission. The transducer pair with the 
highest received signal was inferred to have the best com-
bination of emission efficiency and air impedance match. 
We ultimately selected [35], a readily available transducer 
with a 12.8 mm diameter, 40 kHz resonant frequency, and 
70° beam width. 

4 IMPLEMENTATION  
BeamBand consists of three main components. First is our 
custom sensor board (Figure 3), which generates, captures, 
and processes ultrasonic signals. Next is a sensor band, 

 
Figure 2. We performed software simulations and physical experiments to better understand ultrasonic beamforming in air 
(seen here from above, 40 kHz transducers with 13mm on-center spacing). Yellow denotes high acoustic energy, while blue 
denotes low energy. See also Video Figure. 
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which contains ultrasonic transducers that emit 
and receive signals (Figure 1A). The total cost of our proof-
of-concept hardware was $220. Finally, we have laptop-
based software that receives data from the hardware and 
performs further processing and machine learning. We 
now describe these elements in greater detail.  

4.1 Sensor Board and Transducers 
We use eight 40 kHz in-air ultrasonic piezoelectric trans-
ducers [35] (identified in Section 3). A single sensing in-
stance consists of firing a single strong pulse using 7 trans-
ducers, each with a specified phase shift. To drive these 
transducers with software-controlled waveforms, we built 
a custom sensor circuit (Figure 3), which has three main 
components – a high voltage EMCO SIP100 DC-DC power 
regulator [9], high voltage amplifiers, and a multiplexed an-
alog frontend. A Teensy 3.6 was used to control the sensor 
circuit [40], which we overclocked to 240 MHz.  

We configure the microcontroller to toggle its digital 
pins, generating a 3.3 Vpp 40 kHz square wave. This signal 
is amplified to 100 Vpp to drive the transducers. To mini-
mize cross-channel interference and switching overhead, 
each transducer has a dedicated amplifier. In order to per-
form accurate beamforming, we need tight control of trans-
ducer firing times. To minimize latency, we write directly 
into the microcontroller’s I/O map register, allowing us to 
toggle 8 output pins simultaneously in a single clock cycle 
(4.17 ns). This tight control allows us to manipulate the rel-
ative phase of our transducers at a granularity of ~0.1°.  

To capture reflected ultrasound, the one unused trans-
ducer is configured to act as a receiver. During the firing 

sequence of the other seven transducers, we clamp the re-
ceiver transducer to ground, which helps prevent inadvert-
ent actuation due to acoustic coupling and electrical noise. 
After firing is complete, we disconnect the clamp and con-
nect the receiver transducer to our analog frontend. We 
then pass the signal through an active high pass filter with 
fixed gain (fc=39 kHz, G=5) with an additional amplification 
stage with adjustable gain up to 40X. The amplified signal 
is then DC biased to VADC/2 and sampled by the microcon-
troller’s 16-bit ADC at 333 kHz. All captured waveform data 
is transmitted to a laptop over USB for further computation.  

4.2 Power Consumption 
We did not optimize the power consumption of our proof-
of-concept hardware, which is powered by 5V via its USB 
connection. Nonetheless, we did measure current draw: 
~400mA total. Of the total current draw, 250mA is from our 
overclocked Teeny 3.6 board (100mA when not over-
clocked). Our DC-DC converter consumes ~140mA, most of 
which is conversion loss. All other components, including 
our transducers, consume ~10mA.  

4.3 Transducer Band 
As seen in Figure 1, we fabricated a band that could be worn 
on the arm or wrist. We placed eight transducers in a horse-
shoe arrangement, following the contour of the arm, and 
roughly 1cm above the surface of the skin. The band is 
made of EVA foam [42] to allow for greater conformity and 
to reduce acoustic coupling between transducers. An ad-
justable elastic band is used to affix the sensor to the user. 
We chose not to include any transducers aimed at the back 
of the hand, as fingers generally articulate inwards. It is 
worth noting that this arrangement is slightly different 
than our physical simulations (where the transducers were 
arranged in a linear array); we re-ran our physical simula-
tions with the horseshoe arrangement and saw a slight deg-
radation in the coherence and resolution of the beamform-
ing. However, we consider the compactness of the horse-
shoe arrangement to outweigh this minor effect.  

4.4 Beamforming 
We selected 5 angles for beamforming (-45°, -22.5°, 0°, 
+22.5°, +45°), illustrated in Figure 1B, that cover the typical 
range of finger and wrist motion. We also focus at 3 dis-
tances (Figure 1B): 2 cm, which roughly correlates to the 
base of the palm; 8 cm, which roughly correlates to the base 
of the fingers; and infinite focus to capture more distant 
features, such as finger tips. Infinite focus and 0° are the 
same beamforming pattern, so thus in total, each sensing 
round consists of 7 unique beamformed emissions. 

 
Figure 3. The custom sensor board for BeamBand. A) DC-
DC converter, B) Teensy 3.6, C) high voltage amplifiers,  
D) multiplexer, and E) filter and amplification stage. 
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4.5 Acoustic Viewpoints & Waveforms 
At any given time, seven transducers act as transmitters 
and one acts as a receiver. The sensor board cycles through 
all transmitter-receiver combinations, which results in 8 
configurations. For each transducer configuration, we emit 
all 7 beamforming emissions, and capture 500 samples of 
the reflected waveform (333 kHz sampling rate), represent-
ing 1.5 ms of data. In total, this process yields 56 recorded 
waveforms (8 configurations ´ 7 beamforming sequences) 
which we call a “sensing frame” (illustrated in Figure 1B). 

4.6 Framerate 
Each beamforming firing sequence takes 0.5 ms to generate 
and emit, followed by 1.5 ms of data collection. Thus, cap-
turing a full sensor frame (56 waveforms) takes 112 ms. 
This results in ~8 full sensor frames per second.  

For experimental purposes, we captured extra large buffers 
to see if there were interesting reflections at longer ranges. 
However, our study (and also seen in Figure 4) shows most 
signal returns within 0.8 ms, and if we contract to this 
smaller recording period, framerate increases to ~14 Hz. It 
is also possible to pre-generate beamforming sequences and 
store them in memory, which would save a further ~28 ms 
per sensor frame and increase framerate to ~22 Hz. Further 
optimizations could include time multiplexing the emis-
sions such that one is in-flight while another is returning.  

4.7 Features and Machine Learning 
Our machine learning pipeline first converts the 56 incom-
ing waveforms captured by our hardware into features. We 
segment each waveform into 20 bins and take the standard 
deviation of each bin as a feature, yielding 1120 values. We 

use Scikit-learn’s Random Forest (default parameters, 500 
trees) [33] for classification. All tasks were performed on a 
standard configuration 2013 MacBook Pro 15”.  

5 GESTURE SET 
Rather than invent a custom gesture set, we purposely 
chose to adopt two gesture sets from the literature to re-
duce design bias and enable direct comparison between 
systems. The first is the hand gesture set defined in Tomo 
[50]. These seven gestures (relax + six “hand” gestures) are 
depicted in Figure 5 (green underscore). We also adopted 
the hand gesture set defined in Jung et al. [18], which ex-
tends or flexes the hand along three axes (two wrist axes 
and one finger axis). These six gestures are depicted in Fig-
ure 5 (purple underscore). We refer to this gesture set as 
“six-axis” in later text. Note these gesture sets have four 
common gestures, Right = Wrist Flexion, Left = Wrist Exten-
sion, Fist = Finger Flexion, and Relax = Finger Extension.  

6 EVALUATION  
In this study, we evaluated the gesture classification per-
formance of BeamBand. We recruited 10 participants (4 fe-
male, mean age 25), which had a mean wrist diameter of 
5.5 cm (SD=0.8). The study took approximately one hour to 
complete and paid $20.  

6.1 Procedure 
Participants wore BeamBand on their non-dominant wrist 
(i.e., like a watch). All of our participants were right 
handed, so the BeamBand was worn on the left wrist. A 
single round of data collection consisted of each gesture be-
ing performed once, in a random order. Each gesture was 

 
Figure 5. Our two gesture sets – Tomo set underscored in green and Six-Axis set underscored in purple (note four gestures 
are shared). A) Relax/Finger Extension, B) Fist/Finger Flexion, C) Right/Wrist Flexion, D) Left/Wrist Extension, E) Stretch, F) 
Thumbs Up, G) Spider Man, H) Radial Deflection, and I) Ulnar Reflection.  

 

Figure 4. Example waveforms from four gestures (data received by transducer closest to thumb). 
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held for a few seconds, during which time 10 sensor frames 
were recorded. A session consisted of ten rounds of data 
collection. To add variety and realism, we collected two ses-
sions of data for each user, with the sensor being removed 
and reworn in between. This procedure yielded 18,000 
sensor frames (10 sensor frames ´ 9 gestures ´ 10 rounds ´ 

2 sessions ´ 10 participants). 

6.2 Within-Session Accuracy  
To simulate the performance of gesture recognition when 
the system is calibrated when first worn, we performed a 
leave-one-round-out cross validation, where we trained on 
nine rounds within a session and tested on the tenth (all 
combinations). We repeated this for both sessions inde-
pendently and averaged the results. 

In the full, nine-class combined gesture set, the average 
within-session accuracy across all participants was 90.2% 
(SD=3.7). In the Tomo gesture set specifically, the average 
within-session accuracy was 92.5% (SD=2.2), while the six-
axis gesture set achieved 94.6% (SD=3.4) accuracy. The larg-
est source of error was confusion between similar hand-
closing gestures, such as Fist and Thumbs Up, which ac-
counted for 15.2% of the total error in the hand gesture set. 
Confusion matrices can be found in Figure 6.  

6.3 Across-Session Accuracy  
One significant challenge for on-body sensing systems is 
the ability to perform well across worn sessions. To evalu-
ate the drop in performance after BeamBand is reworn, we 
ran a leave-one-session-out cross validation for each of our 
participants, where we train on all data from session one 
and test on all data from session two, and vice versa, aver-
aging the results. In the full, nine-class combined gesture 
set, the average across-session accuracy for all participants 

was 81.4% (SD=15.9). In the Tomo gesture set, the average 
across-session accuracy was 86.0% (SD-12.7), and in the six-
axis gesture set, the average across-session accuracy was 
89.4% (SD=10.9). We saw a similar confusion between Fist 
and Thumbs Up, which accounted for 9.1% of the total error 
in the hand gesture set. However, other gestures appeared 
unaffected after rewearing the sensor (e.g., Left and Wrist 
Flexion performed at 94.2% and 96.2%, respectively). See Fig-
ure 7 for this experiment’s confusion matrices.    

6.4 Across-User Accuracy  
Another significant challenge for on-body systems is the 
ability to be trained once and work for all users (i.e., with-
out per-user training or calibration). To investigate this po-
tential, we ran a leave-one-user-out cross validation for 
each of our participants, where we train on all of the data 
across both sessions from nine participants and test on both 
sessions from a tenth participant (all combinations). In the 
full, nine-class combined gesture set, the average across-
user accuracy was 44.2% (SD=8.8). In the Tomo gesture set, 
the average across-user accuracy was 51.7% (SD=10.4), and 
in the six-axis gesture set, the average across-user accuracy 
was 63.2% (SD=8.5). This low performance suggests that us-
ers’ hands are different and perform gestures differently. 
Nonetheless, some gestures appear to be more consistent 
across users, such as Wrist Flexion and Radial Deviation, 
which performed at 80.1% and 79.2%, respectively.  

6.5 Comparison to Prior Results 
Our within-session results are similar to the two systems 
from which we drew our gesture sets. Within session, Jung 
et al. [18] reports 95.4% accuracy across six gestures, while 
Tomo [50] on the wrist achieves accuracies of 96.6% across 
seven gestures. On these, BeamBand achieves 92.5% and 

 
Figure 6. Confusion matrices (within-session accuracies) for the combined gesture set (mean accuracy 90.2%), Tomo gesture 
set (mean 92.5%), and Six-Axis gesture set (mean 94.6%). 
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94.6% respectively. When the gesture sets are merged (nine 
classes), BeamBand is 90.2% accurate.  

Our system also performs comparably to other systems 
with custom gesture sets. Most notably, SensIR  [29] reports 
93.3% accuracy across twelve gestures, zSense [47] is 94.8% 
accurate across nine gestures, Skinput [15] is 96.8% accu-
rate on four finger flicking gestures, and Mime [6] achieves 
~95% accuracy on four gestures. Note that none of these 
systems evaluate across-session or across-user accuracy.  

Few systems evaluate across-session accuracy, which is 
particularly challenging for on-body sensing systems. 
Tomo reports across-session accuracies of 65.3% for seven 
gestures. On the same gesture set, BeamBand achieves 
86.0%. Jung et al. does not report cross-session accuracy, but 
for reference, BeamBand achieves 89.4% accuracy on its 
gesture set.  

Rarest are systems that evaluate across-user accuracy 
(except for worn computer vision systems, which tend to 
be robust). Tomo reports across-user accuracies of 38.8% on 
the wrist across seven gestures, while BeamBand achieves 
51.7% on the same set. We could not find any other points 
of comparison in the literature.  

6.6 Robustness to Sleeve Occlusion  
Unlike light, ultrasound can pass through thin fabrics. We 
found in development that we could roll our sleeves down 
over the sensor and train the system occluded with minimal 
impact on accuracy. In order to more formally measure ro-
bustness to sleeve occlusion, we placed two identical trans-
ducers, facing each other, 8 cm apart. We drove one trans-
ducer using a function generator (40 kHz, 10 Vpp) while the 
other was connected to an oscilloscope. We then draped a 
single layer of various fabrics over the transmitting trans-
ducer to simulate sleeve occlusion. We tested ten fabrics of 
different material, thicknesses and knit density (Figure 8).  

While thickness does appear to correlate with signal at-
tenuation, a more significant factor is knit density. For ex-
ample, the polyester dress shirt was among the thinnest of 
our tested fabrics, and yet hurt performance the most. Con-
versely, the wool sweater (low knit density) was one of our 
better performing materials, despite being our thickest.  

7 STRENGTHS & WEAKNESSES 
While BeamBand is competitive with prior systems, it is not 
yet sufficiently accurate for e.g., a consumer device. How-
ever, as a proof of concept, the technical approach looks 
promising. In order to achieve “out-of-the-box” gesture 
recognition, more work is required to develop a generaliza-
ble model. Collecting more data across a wide range of par-
ticipants may improve robustness. There may also be merit 
in moving away from classical machine learning methods 
towards deep learning. We also suspect the addition of a 
calibration stage that homes the orientation of the wrist-
band could raise across-session and across-user accuracies. 

Another avenue for future work is exploring different 
frequencies of ultrasound. Transducers running at 40 kHz 
are ubiquitous (and thus inexpensive) but are almost cer-
tainly not the optimal frequency for gesture recognition (a 

 

Figure 8. Signal strength (normalized to “no fabric” condi-
tion) for ten clothing fabrics. 

 
Figure 7. Confusion matrices (across-session accuracies) for the combined gesture set (mean accuracy 81.4%), Tomo gesture 
set (mean 86.0%), and Six-Axis gesture set (mean 89.4%). 
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wavelength of ~8.5mm is likely too large). Higher frequen-
cies could enable superior sensing of fine-grained motions 
and gestures, though at the cost of higher signal attenua-
tion in air, which would have to be overcome with a higher 
drive voltage or more sensitive analog frontend.  

Although a horseshoe arrangement should permit some 
degree of beamforming in the axis normal to the palm, we 
treat our array as though it was linear, which permits 
beamforming along the plane parallel to the palm. More ad-
vances beamforming patterns, or certainly a 2D transducer 
array, would enable 3D raster-scan-like capabilities, which 
could offer much richer signals. Without doubt, it would 
facilitate recognition of gestures like Fist and Thumbs Up, 
which in cross-section look fairly similar.  

We used a general-purpose microcontroller to facilitate 
research and rapid prototyping. In a commercial implemen-
tation, beamforming patterns would be saved in memory 
and specialized, energy-efficient hardware (e.g., ASICs) 
would drive the entire sensing process. Reducing the sens-
ing duty cycle and running at full frame rate only when a 
change is detected would also improve power consumption. 
The sensing principle itself is fairly power efficient; the 
transducers themselves require virtually no power to drive. 
Thus, we believe a tether-less, self-contained version of 
BeamBand is possible with proper engineering. 

There are also some important physical constraints. For 
example, we needed to raise the transducers off the skin in 
order to project acoustics over the bump at the base of the 
palm, which increases the minimum thickness of the band. 
Another limitation was the size of the transducers we se-
lected – almost 13 mm in diameter. However, the piezo-el-
ements inside are ~5 mm in diameter, which suggests 
tighter integration is possible. Also, ultrasonic transducers 
are not restricted to cylindrical housings; medical ultra-
sound utilizes small square elements arranged in a strip. In-
deed, BeamBand could sit behind an acoustically-transpar-
ent plastic window on the side of smartwatches, very simi-
lar to medical ultrasound wands. 

8 CONCLUSION 
We have presented BeamBand, a novel worn sensing 
method that uses ultrasonic beamforming for on-body hand 
gesture recognition. BeamBand projects ultrasonic wave-
fronts at different angles and focal points on the user’s 
hand, and measures waves reflected back to the band. We 
evaluated two gesture sets sourced from the literature and 
our user study reveals promising accuracies, both within-
session and across-session. We hope our effort will act as a 

catalyst for deeper investigation into ultrasonic beamform-
ing for enabling novel interactions. 
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